
Acnet Data Requests/Settings
System Implementation

Mar 16, 1990

Introduction
The message formats for Acnet data requests/settings is described in the

Acnet Design Note 22.28. It uses the Acnet header designed by Charlie Briegel to
support generalized task-task communications across a network. The Network
Layer software in the VME Local Stations supports these Acnet header-based
messages. This note describes the implementation of the support for Acnet Data
Services data acquisition and setting messages.

Message flow
When a request or setting message is received, it is directed to a well-known

taskname RETDAT for requests and SETDAT for settings. (These 6-character
network task names are encoded in the “Radix-50” form used by PDP-11
computers.) At initialization, the Acnet Request Task creates a message queue
(called ACRQ) that is used to receive Acnet header-based messages directed to the
taskname RETDAT or to the taskname SETDAT. NetCnct registers both tasknames
to the Network Layer. (By directing both message types to the same queue,
processing of the messages in original network order is assured. One can issue a
setting command and immediately issue a request to read back the setting value
and still be confident of obtaining the new setting, assuming a valid setting.)

Function NetCnct (taskName, queueId, eventMask, VAR taskId);

The eventMask is left zero, as the Request Task will simply wait on the message
queue rather than wait on an event. The Request Task then enters an infinite loop
that calls NetCheck to wait for a message and, upon receiving one, processes it.

Function NetCheck (taskId, timeOut, VAR msgRef);

When the function returns with valid status, the message type is checked as
found in the first word of the Acnet header. If it is a USM (unsolicited message)
with the CAN bit set that was directed to RETDAT, the request identified by the
message id is cancelled. If it is a USM that was directed to SETDAT, the setting
message is processed immediately with no acknowledgment message.

If the message type is a request, the message following the header is checked. If it
is a setting, it is processed immediately, and an acknowledgment is returned in
the form of a status-only reply message (Acnet header only). If it is a request for
data, then 3 message blocks are allocated for support of the new request. (If the
request specifies an existing active message id, then the existing request is
cancelled.) The basic request block (type#12) houses the various parameters
needed to monitor the request activity. Two pointers are included in that block

Acnet Data Requests/Settings Mar 16, 1990 page 2
and the answers block (type#9).

The basic Acnet request block (type #12) contains the array of device request
blocks (DRB’s) and the frequency time descriptor (FTD).

MBlkSize MBlkType=12

ReqAHdr ReqAHdr#by

LinkNext

Update Cntr

$00

ReqAHdr=$20

$08

$10

$18 — —

Ptr to internal ptrs block (#14) Ptr to answers block (#9)

Request Request#by

flags status destNodeLan srcNodeLan

destTaskName

msgLng

srcTaskId msgId

—

Acnet header

FTD cntr mxAnsLng #rPkts FTD

#bytes dOffset
device
request block
(4 words)

…

Request=$38

— —

$28

$30

$40

$48 additional DRB's

readOff postPOff

The Internal Ptrs block (type #14) contains the array of internal ptrs that are used
to update the request (build the answers) efficiently.

pBlkSize ptrsOff=8 nPtrs pBlkType

intPtr1ptrsOff

$00

intPtr2

…

Acnet Data Requests/Settings Mar 16, 1990 page 3
The answers block (type #9) is an Acnet message block of the form used by the
Network Layer software when the answers are to be returned to the requesting
node/task. It also includes a pointer to the parent request block (type #12) for
use by QMonitor for one-shot requests that need automatic cancellation.

MBlkSize MBlkType=9

HdrOff HdrLng

$00

$08

$10

$18
dest
Node netQFlag

FmtOff FmtLng

flags status destNodeLan srcNodeLan

destTaskName

msgLng

srcTaskId msgId

—

Ptr to xmitStat word

destNodeOff #bytes-2

MsgOff MsgLng XtrOff XtrLng

$30

Acnet header

$28

Ptr to request block (type#12)taskId —$20

$38 — —

$40 …answer data …

…

status

…answer datastatus …

additional answer packets

After the request support blocks have been filled, the basic request block is
inserted into the chain of active data requests using INSCHAIN. It is inserted at a
position adjacent to another request block made by the same node, if any, in
order to increase the likelihood of combining the answer responses of multiple
requests into the same network frames. Then the Update Task is triggered to
update the request and build the first set of answers immediately.

The request message is processed as it resides in the network frame input buffer
DMA’d into memory by the chipset. This processing includes “compiling” the
request into the DRB’s and the internal ptrs array for later update processing.
The message count word in the network frame buffer is decremented to signal to

Acnet Data Requests/Settings Mar 16, 1990 page 4
the network that the request message space is now free for future use. Note that
initializing the request as it resides in the network buffer (instead of using
NetRecv to copy it into the caller’s buffer) saves copying the ident arrays in the
request, at the expense of the additional responsibility of decrementing the
message count word when finished with the request message.

Updating requests
The Update Task scans through all active requests each cycle to update any

which are due for processing. It checks for this new request block type (#12) and
builds the answers accordingly. The read-type routines are called for each listype
using the array of internal pointers to build the answer data.

When the Update Task has built answers that are to be returned to the requester,
it invokes the NetQueue routine to do it. Just before that, however, it calls
NetXChk to flush any existing queued messages that are going to a different
node or use a different protocol type (different SAP) to the network chipset. This
is to ensure prompt delivery of responses to different nodes and yet combine
answer messages directed to the same node into the same frame for greater
network efficiency.

Function NetXChk (newNode, newType): Integer;

Function NetQueue (taskId, VAR msgBlk, VAR xmitStat): Integer;

The Update Task flushes all queued messages to the network after it has
processed all active requests each 15 Hz cycle.

Acnet Settings
Processing setting messages, as compared with data requests, is greatly

simplified because it is all done immediately and no dynamic data structures
need be prepared for later update processing. The destination task name of
SETDAT indicates that the message is a setting.

The many set-type routines have been enhanced so that they now return error
codes whenever they encounter errors. (Previously, the setting was simply
ignored.) This error response word is used in the setting acknowledgment
message. A zero status indicates no detected error in performing the setting. This
acknowledgment is returned only if the setting message type is a request. If the
setting message is a USM, no acknowledgment is returned.

Acnet Request Module Road Map
The organization of the routines in the ACREQ module is as follows, where an

asterisk denotes a declared entry point:

Acnet Data Requests/Settings Mar 16, 1990 page 5
*ACREQ

CANCEL REQUEST

ACDELETE

DOPTRS DOANSW

*ACDELCHK

*ACUPDNEW *ACUPDCHK

ACUPDATE

Acnet Data
Request/Setting
Task

Update Task

QMonitor Task

SETTING

SETACK

ADJDATA
SETLOCAL

(in SETDATA module)

PPANABL PPESTATPPDGABL PPBSTAT

ADJABLK

MDANABL MDDGABL MDBSTAT

MDAFLGS

The upper collection of routines comprise the Acnet Data Request Task, which
waits for a message directed to the destination taskname RETDAT or SETDAT and
processes it. For a request message, the CANCEL routine searches the active list
chain for a match against the message id (“list#”), the requesting node and
source task id. If it finds a match, it calls ACDELETE to cancel that active request.
The REQUEST is the bulk of the code which prepares the request block, internal
pointers block and answers block for later processing by the Update Task. It uses
several other routines to help break that job down into more manageable pieces.

For a setting message, the setting action is performed immediately. The system
routine SETLOCAL is called to process each packet. An error return aborts the
processing of any remaining settings in the message, and SETACK is invoked to
deliver the setting acknowledgment status-only reply message.

The middle section is the ACDELCHK routine which is called by the QMonitor
Task when it has detected the completion of transmission of an Acnet-type
message (block type#9) with bit#6 and bit#5 of the NetQFlg word set in the
block, indicating that the block is to be retained for re-use and that it is a Acnet
protocol request as opposed to a DZero protocol request. It checks for the case of
a one-shot Acnet data request that should be cancelled. So QMonitor has to
recognize the type#9 message and be aware of the NetQFlg word. It also looks
for the case of the type#$F9 and frees the memory of that block. (A type#$F9

Acnet Data Requests/Settings Mar 16, 1990 page 6
block is an altered type#9 block no longer needed for holding an Acnet answer
response but could not be freed when cancelling the Acnet request because bit#7
of the NetQFlg was set indicating that the block was queued for transmission to
the network.)

The last section includes two entry points that are called by the Update Task to
process type#12 requests during its traversal of the chain of active requests.
ACUPDNEW updates the request only if it has never been updated before, whereas
ACUPDCHK examines the FTD counter and updates the request only if it is due.
ACUPDATE shepherds the actual updating of the request and queues an answer
response to the network.

Error reporting for requests
A number of potential errors are detected when processing an Acnet data

request message. For most of these, a response is returned to the requester
consisting of a status-only reply, which includes only the Acnet header. Current
error codes are as follows:

-32 spare
-33 invalid message size
-34 spare
-35 invalid #request packets
-36 dynamic memory unavailable
-37 invalid listype#
-38 invalid identype (error in listype table)
-39 invalid ident length for listype#
-40 invalid #bytes requested per ident
-41 invalid total #idents this request
-42 size of answers too large
-43 size of answers > max length given
-44 nonzero data offset not supported in request packet
-45 nonzero data offset not supported in setting packet
-46 invalid #setting packets
-47 invalid read routine type# (error in listype table)
-48 node# does not match this system’s node#
-49 invalid destination task name

In addition to the response to the requester, these errors are recorded in the Local
Station in local variables of the Acnet Request Task. They can be inspected for
diagnostic value (with suitable instruction). For each error, a data word is
recorded for the last error of that type followed by a count word of the number of
errors of that type that have occurred since the station was reset.

Acnet Data Requests/Settings Mar 16, 1990 page 7
-21 destination task not connected to network (RETDAT or SETDAT)

This means that the 4-byte destination task name in the Acnet header was not
recognized by the node that received it. For systems which have Network Layer
support but have not yet been updated with the Acnet data request software, this
will certainly result.

Setting acknowledgment error codes
The following list of errors can occur in response to a data setting message:

0 No error. Setting successful.
-65 System table not defined for this listype.
-66 Entry# (chan#, bit#, etc) out of range.
-67 Odd #bytes of data
-68 Bus error
-69 #bytes too small
-70 #bytes too large
-71 Invalid #bytes
-72 Set-type out of range (error in listype table)
-73 Settings not allowed for this listype
-74 Analog control type# out of range (error in analog descriptor)
-75 Invalid binary byte address in BADDR table
-76 Invalid mpx channel# (Linac D/A hardware)
-77 F3 scale factor out of range (motor #steps processing)
-78 No CPROQ table or co-proc# out of range
-79 Hardware D/A board address odd
-80 Bit# index out of range (associated bit control via channel)
-81 Bit# out of range for this system’s database
-82 Digital Control Delay table full (for software-formed pulses)
-83 Digital control type# out of range 1–15
-84 Co-processor command queue unavailable
-85 Co-processor invalid queue header
-86 Queue full or unavailable
-87 Dynamic memory allocation failed
-88 Error status from 1553 controller
-89 Invalid 1553 command for one word output
-90 Invalid 1553 Command Block address (must be multiple of 16)
-91 Invalid 1553 order code in first word of Command Block
-92 1553 interrupts not working
-93 Cannot initialize 1553 command queue
-94 No Q1553 table of pointers to 1553 controller queues
-95 Invalid Motor table
-96 Motor table full
-97 Invalid 9513 timing channel pair
-98 Timing event# out of range.
-99 Invalid data value.

Acnet Data Requests/Settings Mar 16, 1990 page 8
-100 Invalid #bytes of text in Comment alarm control
-101 No DSTRM table of Data Stream queue pointers
-102 Data Stream queue type# out of range
-103 Data Stream queue not initialized
-104 No MMAPS table of memory-mapped board templates
-105 Invalid MMAPS table header
-106 Invalid MMAPS table entry size
-107 Invalid board# for MMAPS table
-108 Invalid directory entry in MMAPS table
-109 End of MMAPS table reached during template processing
-110 Invalid MMAPS command type code
-111 Invalid MMAPS loop params
-112 Invalid MMAPS nested loop
-113 spare
-114 Invalid listype#
-115 Invalid ident type# (error in listype table)
-116 Invalid ident length for this listype
-117 Little console settings switch disabled
-118 Little console external settings switch disabled
-119 Data Server setting not implemented
-120 Invalid listype for this Acnet property

Acnet Data Requests/Settings Mar 16, 1990 page 9
Data format conversions

Special considerations of the Acnet protocol require support of several
standard data formats. Logic is included that supports the following standard
record structures:

ANALBL Analog Alarm Block
DGALBL Digital Alarm Block
BSTATS Basic Status
BCNTRL Basic Control
ESTATS Extended Status

These standard data formats are as follows:

ABStat Nominal Tolerance

tries
now

tries
needed

Evt#1
=00

Evt#2
=00 #trips

— —

—

—

Analog Alarm Block

Digital Alarm Block

ABStat Nominal=0/1 —

—

Mask=1

tries
now

tries
needed

#trips

— —

Basic Status

Basic Control

0 0 0 0 0 0 0 0 1 - I 1 B A0 0

0 - - - - - 1 0 0 - I 1 B A0 0

I 2 bm by 2c B - - - - - - - -A N

I 2 bm by 2c B - - - - - - - -A - Analog alarm flags

Digital alarm flags

0/1

0/1

—

—

DE LE EV HI LO K2 K1 K0 AD Q1 Q0 — AI AB GB BP

DE LE EV HI LO K2 K1 K0 AD Q1 Q0 — AI AB GB BP

Evt#1
=00

Evt#2
=00

(Bytes swapped for Vax)

(Special adjustment for Bit# setting)

The alarm blocks are the most complex structure to support. The flag word must
be edited to conform to the Acnet standard form in response to a data request.
And it must be edited to the Local Station format in response to a setting. The

Acnet Data Requests/Settings Mar 16, 1990 page 10
other fields are similarly edited. The tries needed byte may be one or two,
according to the 2x bit in the analog or binary alarm flags. The #trips word is
returned as extra info in the alarm block. Event-related alarms are not supported.

A special adjustment must be made to accommodate data requests of less than 6
bytes for an analog alarm block. When the read-type routine is invoked to update
the answers to such a request, the #bytes requested must be set to at least 6, or
the read-type routine will not return the analog alarm flags word that must be
edited to make up the ABStat word in the reply. This adjustment also requires
that 6 extra bytes be allocated in the answers block (type#9) in order to assure
that the extra bytes requested of the read routine cannot be written beyond the
end of the block.

For the case of the Basic Status property, the bytes of answers must be swapped
to conform to the byte order of the DEC machines. This is also true of some forms
of Basic Control, but the data sent with listype #21 (digital I/O via Bit#) is
considered a word, where the hi byte is the digital control type# and the lo byte
is the pulse delay (when used). So in this case, the bytes should not be swapped.

Limitations of present implementation
Features not supported in the initial version of Acnet request handling are the

following:

SSDR-related requests
Event-style FTD’s
Data offset

It is not intended to support data requests of the “Data Server” type for the Acnet
protocol. Idents in a request are ignored if they do not include the node# of the
local station receiving the request in the first word of the ident. This means that
one could send the same request to a group of nodes using the functional group
multicast form of network addressing, and each node receiving the request
would select out its own idents for answer response. (Obviously the requesting
node would need to scan the original request in order to be able to match the
answers with the questions.) Currently, however, the Acnet header-based
protocols do not permit sending request messages to a group of nodes.

Comparison with “classic” protocol
The Acnet RETDAT/SETDAT protocol for data requests/settings is a very

flexible protocol that serves multiple front end computers whose internal
software may be organized quite differently. The SSDN component of the
request/setting packets is the key that makes it work. The coding of the 8-byte
SSDN structure can be designed for the needs of each front end; neither the

Acnet Data Requests/Settings Mar 16, 1990 page 11
correctly entered into the central database.

The “classic” protocol that has been used by the Local Station processors since
1982 is designed to support that particular front end type. The concept of
characterizing data requests in terms of arrays of idents to be processed in the
same manner is used to optimize request update efficiency. Updating an array of
channels with analog readings, for example, is distilled down to a 3 instruction
loop with the loop count being the number of channels in the array.

This implementation of the RETDAT/SETDAT protocols does not rearrange the
request into one that can be processed optimally. It can be enhanced at a later
date if the extra effort is deemed to be worth the increase in efficiency.

